Mikhail V. Barybin

Malott Hall, Room 1025

Academic Degrees

  • B.S. in Chemistry with Minor in Mathematics (fulfilled requirements), 1994, Higher Chemical College, Russian Academy of Sciences
  • Ph.D. in Chemistry, 1999, University of Minnesota
  • Postdoctoral Associate, 1999-2001, MIT


  • 2011 Outstanding Educator Award, KU Mortar Board Honor Society, 2011
  • Byron A. Alexander Graduate Mentor Award, CLAS, University of Kansas, 2010
  • DuPont Young Professor Award, 2007
  • National Science Foundation CAREER Award, 2006
  • First Award, Kansas NSF EPSCoR, 2003
  • Graduate School Doctoral Dissertation Fellowship, University of Minnesota, 1998 – 1999
  • Lando-NSF REU Summer Fellowship Award, University of Minnesota, 1993
  • B. Yeltsin Presidential Fellow, Higher College of Chemistry (Russia), 1993 - 1994
  • 1st Prize, All Russia Competition of Undergraduate Students in Chemistry Research, Russian Chemical Society, 1992

Areas of Specialization

Organometallic, Coordination, and Supramolecular Chemistry

Research Interests

Our research program is at the interface of inorganic, coordination, organic, and materials branches of chemistry. It largely involves development of organometallic and inorganic synthetic methodologies and studies of electron delocalization and transport in electron-rich organometallics. For example, we have recently devised strategies for incorporating the electronically unusual azulenic motif (a carbon framework involving fused 5- and 7-membered rings) into molecular and supramolecular hybrid metal/organic ensembles relevant for applications in molecular electronics and nanotechnology. We employ a variety of theoretical, analytical, and spectroscopic tools to assess physicochemical properties of the new compounds/materials established in our laboratory as well as guide our synthetic efforts. Among these methods are multinuclear and multidimensional NMR (including NMR of paramagnetic molecules and ions), organic and organometallic electrochemistry, single crystal X-ray crystallography, electronic and vibrational spectroscopies, Density Functional Theory calculations, and various surface and imaging techniques. The current projects can be grouped into the following categories:

  • Azulene-based organometallics: toward new hybrid metal/organic compounds and materials with unusual electron transport and optical properties (e.g., J. Am. Chem. Soc. 2006, 128, 2300-2309)
  • Reversible electron-rich electrochromic systems, compact molecular electron reservoirs (e.g., Organometallics 2004, 23, 2927-2938)
  • Designed organic surfaces for electronics or sensing applications (e.g., Langmuir 2006, 22, 4599-4606)

Selected Publications

Nemykin, V. N.; Purchel, A. A.; Spaeth, A. D.; Barybin, M. V. "Probing Electronic Properties of a Trinuclear Molecular Wire Involving Isocyanoferrocene and Fe(II) Phthalocyanine  Motifs," Inorg. Chem. 2013, 52, 11004-11012.​ (Cover Article)

Scheetz, K. J.; Spaeth, A. D.; Vorushilov, A. S.; Powell, D. R.; Day, V. W.; Barybin, M. V. "The 2,6-Dimercaptoazulene Motif: Efficient Synthesis and Completely Regioselective Metallation of its 6-Mercapto Terminus," Chem. Sci. 2013, 4, 4267-4272.

Maher, T. R.; Meyers, J. J., Jr.; Spaeth, A. D.; Lemley, K. R.; Barybin, M. V. "Diisocyanoarene-linked Pentacarbonylvanadate(I-) Ions as Building Blocks in a Supramolecular Charge-Transfer Framework Assembled through Noncovalent π-π and Contact Ion Interactions,” Dalton Trans. 2012, 41, 7845-7848 (invited contribution to the special issue New Talent: the Americas).

Barybin, M. V.; Meyers, J. J., Jr.; Neal, B. M. Renaissance of Isocyanoarenes as Ligands in Low-Valent Organometallic Chemistry. In Isocyanide Chemistry: Applications in Synthesis and Material Science. Nenajdenko, V., Ed. Wiley-VCH: Weinheim, 2012, pp 493-529. (ISBN-10: 3-527-33043-7)

Neal, B. M.; Vorushilov, A. S.; DeLaRosa, A. M.; Robinson, R. E.; Berrie, C. L.; Barybin, M. V. "Ancillary Nitrile Substituents as Convenient IR Spectroscopic Reporters for Self-Assembly of Mercapto- and Isocyanoazulenes on Au(111)," Chem. Commun. 2011, 47, 10803-10805.

McGinnis, D. M.; Deplazes, S. F.; Barybin, M. V. “Synthesis, properties and complexation of (pS)-1-isocyano-2-methylferrocene, the first planar-chiral isocyanide ligand,” J. Organomet. Chem. 2011, 696, 3939-3944 (Special Issue on Small Molecule Activation and Catalysis Invoking Metal-Carbon Multiple Bonds).

Complete List of Publications

Back to Faculty

Chemistry department receives more than $6 million in research grants annually
14 chemistry faculty members have NSF CAREER Awards
Longest-running chemistry Research Experience for Undergraduates in the nation